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Optimal response function in networks of excitatory elements
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In this paper the problem of signal propagation in networks of excitatory elements is studied. It is found that
the geometry of signal transmission paths depends crucially on how an excitatory element responds to a
stimulus. Two types of responses are defined: fast and slow. In the slow response case the signal transmission
paths are in the same universality class as optimal paths in the limit of strong disorder. The signal transmission
paths formed in the fast response case constitute possibly a new universality class.
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INTRODUCTION

Transport in disordered media is an important field of sta-
tistical physics, related to many applications of practical rel-
evance. Frequently, real-world problems involve an excitable
network: a disordered lattice of bonds with randomly distrib-
uted thresholds V,. A bond is open for transport, provided
that the potential drop across it exceeds threshold value V;
and is closed otherwise. Problems of this kind arise in net-
works of diodes [1], flow of Bingham plastic [2], or foam [3]
in porous media and dielectric breakdown [4]. In the latter
case an element which has been opened for transport cannot
be closed any more—an insulating element, after it has be-
come broken, transforms irreversibly into a conductor (or
superconductor). An important area of application of excita-
tory networks is also modeling neuronal networks, in which
case additional degrees of freedom are assigned to the net-
work elements [5].

In the present study I investigate the geometry of the sig-
nal transmission paths in a minimal model of an excitatory
network, because it straightforwardly determines the time of
the reaction of the network to a stimulus. The geometry of
the signal transmission paths in excitatory networks is also a
subject of confusion. While in some studies it is conjectured
that the signal transmission paths are in the same universality
class as minimal paths in percolating cluster, others claimed
that it is not [3]. Here I show that the geometry of signal
transmission paths depends crucially at least on the features
of the response function of a single element to a stimulus.

Understanding the role of the response function for the
signal propagation in heterogeneous networks of excitatory
elements is important because there are neural disorders in
which this function can be influenced. For example gradual
destruction of myelin, related to multiple sclerosis, disturbs
pulse propagation along axons [6]. Also decreased amount of
neurotransmitters (e.g., reduction in dopamine, observed in
Parkinson’s disease [7]) can modify the reaction of a neuron
to a stimulus. In this study I show on a simple model that
slowed response to a stimulus can dramatically decrease
functionality of a whole network, while firing response is
necessary to generate an optimal reaction.
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PROBLEM FORMULATION

Here I define an excitatory element as an element, which
conducts a received signal if its amplitude is larger than the
threshold value and is an ideal insulator otherwise. I further
assume that the resistance of an excitatory element is equal
to zero in the conducting state. The values of the excitation
threshold are sampled from uniform distribution. Excitatory
elements are assembled and form a lattice. In this study I
investigate the geometry of signal transmission paths in two-
dimensional (2D) square lattices (assuming periodic bound-
ary conditions) and in complex networks of Erdos-Rényi [8]
and Watts-Strogatz type [9]. A path is a sequence of contigu-
ous lattice sites. Given two lattice sites X and Y, the minimal
signal amplitude E necessary to enable transmission from X
to Y is equal to

E= min[ max T(Z)], (1)
P(X.Y) ZeP(X,Y)

where P(X,Y) denotes any path, connecting X and Y, Z is a
lattice site contained in P, and T(Z) is the excitation thresh-
old of Z.

An additional feature, which is introduced in the model of
an excitatory network, is an element response function. Spe-
cifically, I consider two types of response. In a fast response
case, a signal at the outputs of an excitatory element jumps
from zero to A after receiving at input a signal with super-
threshold amplitude A. In a slow response case a signal at the
outputs of an excited element grows continuously from zero
to A in a finite time.

In a case of a realistic situation the transmission of a
signal between two excitatory elements is not immediate
(e.g., transmission of a signal between two neurons through a
synapse). Thus a fast response in a realistic network should
be understood not as immediate but rather as faster than a
typical time of communication between neighboring ele-
ments. Consequently, slow response should be understood as
a response slower than a typical time of communication be-
tween neighboring elements.

While the shape of the response function obviously does
not change the amplitude of a signal, necessary to enable
transmission between some two selected sites, it can poten-
tially change the geometry of the signal transmission paths.
In the case of slow response, an excited element always
transmits the received signal to this neighboring element,
which has the lowest excitation threshold. In the case of fast
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TABLE 1. The values of the signal transferring exponent
dstp.

Lattice type Slow response Fast response

Square 2D 0.610+0.002 0.537+0.002
Erdos-Rényi networks 0.355+0.003 0.177+0.003
Watts-Strogatz networks 0.353+0.003 0.181+0.004

response, an excited element can transmit the signal to any of
its neighbors, having excitation threshold not higher than the
amplitude of the received signal.

I use the Dijkstra’s algorithm [10] to find signal transmis-
sion paths. The Dijkstra’s algorithm proceeds as follows.
One starts from a seed site, which by definition has the low-
est possible excitation threshold. All the neighbors of the
seed are put into a queue, which I call “the invasion front,”
and are labeled with their excitation thresholds. The distance
of these sites from the seed is set equal to 1. Then the site
Cyyy in the invasion front, which has the lowest label, is
selected. In the case of slow response, all unlabeled neigh-
bors of C;y are labeled with their excitation thresholds and
put into the invasion front. In the case of fast response, all
unlabeled neighbors of C,;y are labeled with either their
excitation thresholds—if it is larger than the label of
Cyv—or otherwise with the label of C,;y. Next, these sites
are put into the invasion front. The distance of these sites
from the seed is equal to the distance of C,;;y from the seed
increased by 1. Finally, Cy;y is removed from the invasion
front. Then again a site with minimal label within the inva-
sion front is selected and the procedure is iterated until all
the lattice sites have been labeled.

After labeling all sites I calculate mean length of paths
connecting lattice sites with the seed. This procedure is re-
peated 10* times for every lattice topology and for every
lattice size.

It appears that the most expensive part of the algorithm is
localization of the site with the minimal label within the
invasion front. This problem can be however greatly simpli-
fied, if it is noticed that the exact values of the excitation
thresholds are not in fact important. Thus, the sites of an
examined lattice can be ranked with integer numbers in an
order determined by the values of the excitation threshold.
Then the algorithm refers only to these integer indexes, what
speeds up the performance, provided an appropriate data
coding is used.

RESULTS

The mean length {/srp) of signal transferring paths scales
with the number N of the nodes of the underlying lattices:
(Igtp) ~ N¥st. Logarithm of {Iqrp) is plotted vs logarithm of
N in Fig. 1 for square 2D, Erdos-Rényi (mean node degree
(ky=12) and Watts-Strogatz networks (mean node degree
(k)y=4, rerouting probability p=0.05). From these plots I cal-
culate the values of the signal transferring exponent dgrp,
listed in Table I. The values obtained for complex networks
are universal and do not depend on their properties (that is on
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FIG. 1. Logarithm of mean length of signal transferring paths
(Igp) plotted vs logarithm of the number of nodes N of underlying
lattices for slow response (squares) and fast response (circles). (a)
2D square lattice. (b) Erdds-Rényi network. (c) Watts-Strogatz
network.

(k) and p). These values were obtained for the power relation
fitted in the ranges of N as shown in Fig. 1.

The values of dgrp, found for the slow response case
agree for every lattice topology with the values of the opti-
mal path exponent reported for the strong disorder limit
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FIG. 2. Estimates of dgyp exponent obtained for different ranges
of the number of nodes N of a 2D square lattice.

(0.61 and 0.33 for 2D square and Erdos-Rényi or Watts-
Strogatz networks, respectively) [11,12]. From the descrip-
tion of the algorithm it follows that the model of excitation
network with slow response is equivalent to the variation of
the Eden growth model, developed by Cieplak et al. [13].

The signal transferring paths found for the fast response
case are much more compact than in the case of slow re-
sponse. The paths are shorter on average than in the slow
response case (Fig. 1), and also their length grows more
slowly with increasing lattice size (Table I).

The values of dgrp in the fast response case suggest pos-
sibly new universality class of the geometry of the paths. To
test this hypothesis, it must be carefully checked, whether
there is a possibility that the obtained results are consistent
with one of the known models.

In the case of 2D square lattice the value of 2 X dgrp
~1.07 in the fast response case is higher than the fractal
exponent of the optimal paths in the limit of weak disorder
dyq=1[14,15], but smaller than the smallest fractal exponent
reported for 2D site percolation models on a square lattice
dyv=1.13 (the fractal exponent of minimal self-avoiding
walks) [16,17]. To provide evidence that the observed differ-
ence is not an effect of a finite size of simulated systems, I
have fitted the relation (Igrp)~ N?STP for every seven con-
secutive data points (circles) in Fig. 1(a). The results of this
analysis, presented in Fig. 2 [where the box number equal to
k denotes the range of data points from kth to (k+6)th],
indicate that the estimate of dgpp is stable and thus the ob-
served difference between dgrp and the fractal exponents re-
ported for other models is probably not a finite size effect.

To further strengthen the above conclusion I have calcu-
lated the roughness exponent for the signal transferring paths
on 2D square lattices in the fast response case. For this pur-
pose I monitor the y displacement s of the end point of this
path, which first reaches a distance L from the seed site along
axis x. The roughness exponent is defined through the rela-
tion (s?y=L2". In the model of optimal paths in the limit of
weak disorder v is equal to 2/3 [14,15]. In contrast, I have
found v= 1.0 for signal transferring paths in the case of fast
response (Fig. 3).

The above result indicates that the signal transferring
paths on a 2D square lattice in the case of fast response are
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FIG. 3. Logarithm of the average squared y displacement (s?) of
signal transferring paths in fast response case plotted vs logarithm
of x displacement L from the seed site. The data was obtained for
10 000 realization of disorder in a 2D square lattice, linear size of
which was equal to 1000. Straight line with slope equal to 1 is
shown for visual comparison.

different from the model of optimal paths in the limit of
weak disorder. Consequently, this result must also hold for
complex lattices. Numerical proof of such a statement would
be however much more difficult than in the case of 2D
square lattices. Proving that the length of signal transferring
paths does not depend logarithmically on the number of lat-
tice sites (such as in the case of weak disordered optimal
paths) would require probing very large systems, which is
unfeasible because of computational expense of generating
large disordered complex lattices. In my simulations I was
able to probe systems with a number of nodes up to about
1.5 10°. For small systems estimates of dg7p depend on the
range from which dgrp is fitted, but for larger systems dgyp is
quite stable and stays close to 1/6 (Fig. 4). These results
suggest that the model of excitatory network with fast re-
sponse is not related to the percolation theory, because dgtp
equal to 1/3 would be expected if the signal transmission
paths were in the same universality class as minimal paths
(or any other path model) in percolating cluster in critical
dimension d-=6. I expect that in the limit of large lattices
1/6 can be an exact value of dgyp, that is signal transferring
paths are in the same universality class as the shortest paths
on a hypercubic lattice in critical dimension d-=6.

Combining the results obtained for the 2D and complex
network I conjecture that the model of signal transferring
paths with fast response constitutes a new universality class
of path geometry.

FINAL REMARKS

In this study I have examined a minimal model of excita-
tory network. According to the developed model the transi-
tion of an element from an insulating to a conducting state is
determined only by an element response function. Depend-
ing on the features of the response of an excitatory element
to a stimulus I have shown that there are two geometrically
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FIG. 4. Estimates of dgyp exponent obtained for different ranges
of the number of nodes N of Erdos-Rényi (a) and Watts-Strogatz (b)
networks.

different classes of paths, which are equivalent in the sense
of Eq. (1). The paths generated in the case of fast response
are however shorter and their length grows more slowly with
increasing lattice size, than in the case of slow response. I
have shown that the latter model is equivalent to the model
of optimal paths in the limit of strong disorder.

Now, let me discuss how the path geometry influences
functionality of a network. Functionality of an excitatory net-
work transmitting a signal can be connected to at least two
factors: the input signal amplitude necessary to enable trans-
mission through the network and the mean reaction time. The
input signal amplitude is given by Eq. (1) and, in the case of
the analyzed models, does not provide sufficient information
to quantify network functionality. The reaction time can be
estimated for example as the average time of propagation of
a signal from the source node to all the nodes of the network.
In the analyzed models time is not explicitly involved. How-
ever I measure the distance from the source node to all the
nodes of the network. The distance from the source node can
be identified with the propagation time if it is assumed that a
node, which has received a signal, transmits it to all its
neighbors, which have excitation thresholds smaller than the
amplitude of a signal. It is true for both fast and slow re-
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FIG. 5. Distribution of the number of iterations of the Dijkstra’s
algorithm for initial stage of signal propagation in 2D square lattice
for slow response (squares) and fast response (circles) models.

sponse. In the latter case the nodes with lower excitation
threshold transmit signals preferentially, while transmission
is simultaneous in the fast response case. I disregard delays
due to slow response when counting time in different nodes.
Potentially, these delays, when accumulated, may lead to de-
synchronization of the signals propagating along different
paths. The extent of desynchronization must depend on the
specific form of an element response function and this pro-
cess can be disregarded, provided accumulated delays are on
average small comparing to a unit of time.

As long as one concerns the mean reaction time as the
criterion of functionality, an excitatory network built of ele-
ments slowly responding to excitation indeed is not optimal.
To enable an optimal response to an external stimulus, an
excitatory element must fire, just like a neuron.

To explain the difference in the mean reaction time be-
tween the models of slow and fast response I monitored for
every node the number of iterations of the Dijkstra’s algo-
rithm, which were completed since the moment of node ad-
dition to the moment of node removal from the invasion
front. To avoid finite size effects I have collected the values
of the number of iterations, obtained only during initial
stages of signal propagation within large 2D lattices (because
of technical limitations, mainly on the size of the lattices, I
was not able to collect reliable—that is not disturbed by
finite size effects—distribution data for initial stages of sig-
nal propagation in complex lattices). I have found that there
is a qualitative difference between the distributions of the
number of iterations in both models (Fig. 5). In the case of
slow response the distribution of the number of iterations
develops a heavy tail with exponent approximately equal to
1.4. Contrarily, the distribution of the number of iterations is
exponential for the model with fast response. These results
resemble the properties of priority queues, recently discussed
in Ref. [18].

The shape of the distribution of the number of iterations
delivers yet another criterion of the network functionality. In
the case of slow response only relatively small (comparing to
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the fast response) amount of nodes participates in the signal
transmission, which is a disadvantage in a case when node
failures can occur.

The strong disorder limit is often explained as transition
from narrow to broad distribution of weights (excitation
thresholds) associated with the lattice sites [19]. The model
of excitatory network with fast response is a broad distribu-
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tion limit of the familiar model of self-avoiding walks. If the
same excitation threshold is assigned to all sites of an exam-
ined lattice (narrow distribution of excitation thresholds)
then, by construction of the path generating algorithm, the
signal transferring paths in an excitatory network with fast
response are in the same universality class as self-avoiding
walks and optimal paths in the weak disorder limit [14,15].
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